Wednesday, September 26, 2018

HEIGHT AND DISTANCE ALL CONCEPT IN ONE GO





Trigonometry:

I.   sin http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif =
Perpendicular
=
AB
;
Hypotenuse
OB


ii.   cos http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif =
Base
=
OA
;
Hypotenuse
OB

iii.  tan http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif =
Perpendicular
=
AB
;
Base
OA

iv.  cosec http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif =
1
=
OB
;
sin http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
AB

v.   sec http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif =
1
=
OB
;
cos http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
OA

vi.  cot http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif =
1
=
OA
;
tan http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
AB

Trigonometrical Identities:
i.        sin2 http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif + cos2 http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif = 1.
ii.        1 + tan2 http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif = sec2 http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif.
iii.        1 + cot2 http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif = cosec2 http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif.

Values of T-ratios:
http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
(http://www.indiabix.com/_files/images/aptitude/1-sym-pi.gif/6)

30°
(http://www.indiabix.com/_files/images/aptitude/1-sym-pi.gif/4)

45°
(http://www.indiabix.com/_files/images/aptitude/1-sym-pi.gif/3)

60°
(http://www.indiabix.com/_files/images/aptitude/1-sym-pi.gif/2)

90°
sin http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
0
http://www.indiabix.com/_files/images/aptitude/1-div-1by2.gif
1
√2
√3
2
1
cos http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
1
√3
2
1
√2
http://www.indiabix.com/_files/images/aptitude/1-div-1by2.gif
0
tan http://www.indiabix.com/_files/images/aptitude/1-sym-tta.gif
0
1
√3
1
√3
not defined




     Angle of Elevation:

Suppose a man from a point O looks up at an object P, placed above the level of his eye. Then, the angle which the line of sight makes with the horizontal through O, is called the angle of elevation of P as seen from O.
 Angle of elevation of P from O = AOP.

Angle of Depression:

Suppose a man from a point O looks down at an object P, placed below the level of his eye, then the angle which the line of sight makes with the horizontal through O, is called the angle of depression of P as seen from O.











Q1-Two ships are sailing in the sea on the two sides of a lighthouse. The angle of elevation of the top of the lighthouse is observed from the ships are 30° and 45° respectively. If the lighthouse is 100 m high, the distance between the two ships is:
173 m
200 m
273 m
300 m

Explanation:
Let AB be the lighthouse and C and D be the positions of the ships.

Then, AB = 100 m, http://www.indiabix.com/_files/images/aptitude/1-sym-ang.gifACB = 30° and http://www.indiabix.com/_files/images/aptitude/1-sym-ang.gifADB = 45°.
AB
= tan 30° =
1
    http://www.indiabix.com/_files/images/aptitude/1-sym-imp.gif     AC = AB x 3 = 100ROOT3 m.
AC
3

AB
= tan 45° = 1     http://www.indiabix.com/_files/images/aptitude/1-sym-imp.gif     AD = AB = 100 m.
AD

 CD = (AC + AD)
= (100√3 + 100) m
= 100(√3 + 1)
= (100 x 2.73) m
= 273 m.









Q2-The angle of elevation of a ladder leaning against a wall is 60º and the foot of the ladder is 4.6 m away from the wall. The length of the ladder is:
2.3 m
4.6 m
7.8 m
9.2 m

Explanation:
Let AB be the wall and BC be the ladder.

Then, ACB = 60º and AC = 4.6 m.
AC
= cos 60º =
1
BC
2

 BC
= 2 x AC
= (2 x 4.6) m
= 9.2 m.


No comments:

Post a Comment